Approach Briefing Gouge

The purpose of an approach briefing is to prepare the pilot to execute an instrument approach procedure. Pilots should brief the instrument approach procedure when time and workload permits. Preferably, the approach should be briefed 20-25 minutes prior to the start of the descent, the IAF, or the start of radar vectors.

The approach briefing should include the following items:

Pilot Briefing and Notes:

- Name of Procedure, Runway, and Airport Name (e.g. ILS 23R Wright-Patterson AFB)
- Airport Elevation.
- Applicable COM and NAV frequencies (primary and standby).
- Final Approach Course Set

Plan View

- Transition to final (vectors or IAF).
- Minimum Safe Altitude or Terminal Arrival Area altitude (within xx miles of which navigation point).

Profile View

- Approach altitudes.
- Airspeeds and configuration changes,

Landing Minimums:

- Decision Altitude or Minimum Descent Altitude (Straight-In and/or Circling).
- Runway condition, landing roll, and runway length
- Winds on final/landing

Missed Approach

- MAP and missed approach procedure.
- Holding Point and planned type of holding entry.

Sample Approach Briefing

This will be a	(ILS, GPS, V	OR) approach to R	RWY a	it the	airport vi	a the	_
transition (VTF or IAF).	The airport ele	evation (or touchdo	own zone elev	ration) is _	The pi	oper	
communications frequence	cies are set in t	he #1 and #2 radio	(primary and	standby).	The minimum sa	fe altitude fo	r
this approach is	_ within	miles of	The pro	per naviga	tion source (GPS	, VLOC) for	the
approach is selected on the	ne Garmin 430	. The proper navig	gation frequen	cy is set in	the #1 radio (pri	mary and	
standby) and ID'd. The	proper course o	of is set in the	ne #1 OBS/HS	SI. The pro	per navigation so	ource (GPS,	
VLOC) for the approach	is selected in the	he #2 radio (prima	ry and standb	y) and ID'o	d. The proper cou	ırse of	_ is
set in the #2 OBS/HSI.	We will plan to	intercept the final	l approach coi	urse via	(VTF,	Procedure To	urn,
etc.). We will plan to int	ercept the glide	epath at N	MSL at	(fix na	me). Final approa	ach speed wil	ll be
KIAS with appro	ach flaps (25%	set and gear dow	vn (as required	d) prior to t	the FAF. Upon so	eeing the fiel	d
we will configure with _	(flap	s full) and decelera	ate to a V_{ref} o	f K	IAS until crossin	g the fence.	The
runway is (dry, w	vet, icy) and the	e winds will be	(crossv	vind, heady	vind) on final and	l on landing.	
Our landing roll will be _	feet	with a runway leng	th of	_feet. We	will call out 1000) feet, 500 fe	et
and 100 feet above minin	nums. The Dec	cision Altitude (or	Minimum Des	scent Altitu	ide) for the appro	ach is	
feet MSL. The missed ap	proach proced	ure is climb to	altitude	and turn le	ft/right to the	fix a	and
hold We will plan on a	-	entry to the holding	nattern				